
Bringing the Web up to Speed with WebAssembly

Andreas Rossberg
Dfinity Stiftung, Germany

rossberg@mpi-sws.org

Ben L. Titzer
Google GmbH, Germany
titzer@google.com

Andreas Haas
Google GmbH, Germany
ahaas@google.com

Derek L. Schuff
Google Inc, USA

dschuff@google.com

Dan Gohman
Mozilla Inc, USA

sunfishcode@mozilla.com

Luke Wagner
Mozilla Inc, USA

luke@mozilla.com
Alon Zakai

Mozilla Inc, USA
azakai@mozilla.com

JF Bastien
Apple Inc, USA

jfbastien@apple.com

Michael Holman
Microsoft Inc, USA

michael.holman@microsoft.com

ABSTRACT
The maturation of the Web platform has given rise to so-
phisticated Web applications such as 3D visualization, audio
and video software, and games. With that, efficiency and se-
curity of code on the Web has become more important than
ever. WebAssembly is a portable low-level bytecode that
addresses these requirements by offering a compact repre-
sentation, efficient validation and compilation, and safe ex-
ecution with low to no overhead. It has recently been made
available in all major browsers. Rather than committing to a
specific programming model, WebAssembly is an abstraction
over modern hardware, making it independent of language,
hardware, and platform and applicable far beyond just the
Web. WebAssembly is the first mainstream language that
has been designed with a formal semantics from the start,
finally utilizing formal methods that have matured in pro-
gramming language research over the last four decades.

1. INTRODUCTION
The Web began as a simple hypertext document network

but has now become the most ubiquitous application plat-
form ever, accessible across a vast array of operating systems
and device types. By historical accident, JavaScript is the
only natively supported programming language on the Web.
Because of its ubiquity, rapid performance improvements in
modern implementations, and perhaps through sheer neces-
sity, it has become a compilation target for many other lan-
guages. Yet JavaScript has inconsistent performance and
various other problems, especially as a compilation target.

WebAssembly (or “Wasm” for short) addresses the prob-
lem of safe, fast, portable low-level code on the Web. Previ-
ous attempts, from ActiveX to Native Client to asm.js, have
fallen short of properties that such a low-level code format
should have:

• Safe, fast, and portable semantics:

– safe to execute
– fast to execute
– language-, hardware-, and platform-independent
– deterministic and easy to reason about

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2018 ACM 0001-0782/08/0X00 ...$5.00.

– simple interoperability with the Web platform

• Safe and efficient representation:

– maximally compact
– easy to decode, validate and compile
– easy to generate for producers
– streamable and parallelizable

Why are these goals important? Why are they hard?
Safe. Safety for mobile code is paramount on the Web,

since code originates from untrusted sources. Protection for
mobile code has traditionally been achieved by providing a
managed language runtime such as the browser’s JavaScript
VM or a language plugin. Managed languages enforce mem-
ory safety, preventing programs from compromising user
data or system state. However, managed language runtimes
have traditionally not offered much for low-level code, such
as C/C++ applications that do not use garbage collection.

Fast. Low-level code like that emitted by a C/C++ com-
piler is typically optimized ahead-of-time. Native machine
code, either written by hand or as the output of an optimiz-
ing compiler, can utilize the full performance of a machine.
Managed runtimes and sandboxing techniques have typically
imposed a steep performance overhead on low-level code.

Universal. There is a large and healthy diversity of pro-
gramming paradigms, none of which should be privileged or
penalized by a code format, beyond unavoidable hardware
constraints. Most managed runtimes, however, have been
designed to support a particular language or programming
paradigm well while imposing significant cost on others.

Portable. The Web spans not only many device classes,
but different machine architectures, operating systems, and
browsers. Code targeting the Web must be hardware- and
platform-independent to allow applications to run across all
browser and hardware types with the same deterministic
behavior. Previous solutions for low-level code were tied to
a single architecture or have had other portability problems.

Compact. Code that is transmitted over the network
should be small to reduce load times, save bandwidth, and
improve overall responsiveness. Code on the Web is typically
transmitted as JavaScript source, which is far less compact
than a binary format, even when minified and compressed.
Binary code formats are not always optimized for size either.

WebAssembly is the first solution for low-level code on
the Web that delivers on all of the above design goals. It is
the result of an unprecedented collaboration across all major
browser vendors and an online community group to build a

common solution for high-performance applications.1

While the Web is the primary motivation for WebAssembly,
its design – despite the name – carefully avoids any depen-
dencies on the Web. It is an open standard intended for
embedding in a broad variety of environments, and other
such embeddings are already being developed.

To our knowledge, WebAssembly also is the first industrial-
strength language that has been designed with a formal se-
mantics from the start. It not only demonstrates the “real
world” feasibility of applying formal techniques, but also
that they lead to a remarkably clean and simple design.

2. A TOUR OF THE LANGUAGE
Even though WebAssembly is a binary code format, we

define it as a programming language with syntax and struc-
ture. As we will see, that makes it easier to explain and un-
derstand and moreover, allows us to apply well-established
formal techniques for defining its semantics and for reason-
ing about it. Hence, Figure 1 presents WebAssembly in
terms of a grammar for its abstract syntax.2

2.1 Basics
Let us start by introducing a few unsurprising concepts

before diving into less obvious ones in the following.
Modules. A WebAssembly binary takes the form of a

module. It contains definitions for functions, globals, tables,
and memories. Definitions may be exported or imported.

While a module corresponds to the static representation
of a program, a module’s dynamic representation is an in-
stance, complete with its mutable state. Instantiating a
module requires providing definitions for all imports, which
may be exports from previously created instances. Compu-
tations is initiated by invoking an exported function.

Modules provide both encapsulation and sandboxing : be-
cause a client can only access the exports of a module, other
internals are protected from tampering; dually, a module can
only interact with its environment through its imports which
are provided by a client, so that the client has full control
over the capabilities given to a module. Both these aspects
are essential ingredients to the safety of WebAssembly.

Functions. The code in a module is organized into indi-
vidual functions, taking parameters and returnng results as
defined by its function type. Functions can call each other,
including recursively, but are not first class and cannot be
nested. The call stack for execution is not exposed, and thus
cannot be directly accessed by a running WebAssembly pro-
gram, even a buggy or malicious one.

Instructions. WebAssembly is conceptually based on a
stack machine: code for a function consists of a sequence of
instructions that manipulate values on an implicit operand
stack. However, thanks to the type system (Section 3.2),
the layout of the operand stack can be statically determined
at any point in the code, so that implementations can com-
pile the data flow between instructions directly without ever
materializing the operand stack. The stack organization is
merely a way to achieve a compact program representation,
as it has been shown to be smaller than a register machine.

Traps. Some instructions may produce a trap, which im-

1WebAssembly engines are not assumed to spend time on
sophisticated optimizations, because producers usually can
take care of that more cheaply offline. Hence WebAssembly
does not magically make code faster. But it allows other
languages to bypass the cost and complexity of JavaScript.
2WebAssembly’s text format closely resembles this syntax.
For brevity we omit minor features regarding initialization.

mediately aborts the current computation. Traps cannot
(currently) be handled by WebAssembly code, but an em-
bedder will typically provide means to handle this condition,
for example, by reifying them as JavaScript exceptions.

Machine Types. WebAssembly has only four basic value
types t to compute with. These are integers and IEEE 754
floating point numbers, each with 32 or 64 bits, as available
in common hardware. Most WebAssembly instructions pro-
vide simple operators on these data types. The grammar in
Figure 1 conveniently distinguishes categories such as unary
and binary operators, tests, comparisons, and conversions.
Like hardware, WebAssembly makes no distinction between
signed and unsigned integer types. Instead, where it mat-
ters, a sign extension suffix u or s to an instruction selects
either unsigned or two’s complement signed behavior.

Variables. Functions can declare mutable local variables,
which essentially provides an infinite set of zero-initialized
virtual registers. A module may also declare typed global
variables that can be either mutable or immutable and re-
quire an explicit initializer. Importing globals allows a lim-
ited form of configurability, e.g. for linking. Like all entities
in WebAssembly, variables are referenced by integer indices.

So far so boring. In the following sections we turn our
attention to more unusual features of WebAssembly’s design.

2.2 Memory
The main storage of a WebAssembly program is a large

array of raw bytes, the linear memory or simply memory.
Memory is accessed with load and store instructions, where
addresses are simply unsigned integer operands.

Creation and Growing. Each module can define at
most one memory, which may be shared with other instances
via import/export. Memory is created with an initial size
but may be dynamically grown. The unit of growth is a
page, which is defined to be 64 KiB, a choice that allows
reusing virtual memory hardware for bounds checks on mod-
ern hardware (Section 5). Page size is fixed instead of being
system-specific to prevent portability hazards.

Endianness. Programs that load and store to aliased
locations with different types can observe byte order. Since
most contemporary hardware has converged on little endian,
or at least can handle it equally well, we chose to define Web-
Assembly memory to have little endian byte order. Thus the
semantics of memory access is completely deterministic and
portable across all engines and platforms.

Security. All memory access is dynamically checked against
the memory size; out of bounds access results in a trap.
Linear memory is disjoint from code space, the execution
stack, and the engine’s data structures; therefore compiled
programs cannot corrupt their execution environment, jump
to arbitrary locations, or perform other undefined behavior.
At worst, a buggy or malicious WebAssembly program can
make a mess of the data in its own memory. Consequently,
even untrusted modules can be safely executed in the same
address space as other code. Achieving fast in-process iso-
lation is necessary for interacting with untrusted JavaScript
and the various Web APIs in a high-performance way. It
also allows a WebAssembly engine to be safely embedded
into other managed language runtimes.

2.3 Control Flow
WebAssembly represents control flow differently from most

stack machines. It does not offer arbitrary jumps but instead
provides structured control flow constructs more akin to a
programming language. This ensures by construction that
control flow cannot form irreducible loops, contain branches

(value types) t ::= i32 | i64 | f32 | f64
(packed types) pt ::= i8 | i16 | i32
(function types) ft ::= t∗ → t∗

(global types) gt ::= mut? t

unop iN ::= clz | ctz | popcnt
unopfN ::= neg | abs | ceil | floor | trunc | nearest | sqrt
binop iN ::= add | sub | mul | div sx | rem sx |

and | or | xor | shl | shr sx | rotl | rotr
binopfN ::= add | sub | mul | div | min | max | copysign
testop iN ::= eqz
relop iN ::= eq | ne | lt sx | gt sx | le sx | ge sx

relopfN ::= eq | ne | lt | gt | le | ge
cvtop ::= convert | reinterpret

sx ::= s | u

(instructions) e ::= unreachable | nop | drop | select |
block ft e∗ end | loop ft e∗ end | if ft e∗ else e∗ end |
br i | br if i | br table i+ | return | call i | call indirect ft |
get local i | set local i | tee local i | get global i |
set global i | t.load (pt sx)? a o | t.store pt? a o |
memory.size | memory.grow | t.const c |
t.unopt | t.binopt | t.testopt | t.relopt | t.cvtop t sx?

(functions) func ::= ex∗ func ft local t∗ e∗ | ex∗ func ft im

(globals) glob ::= ex∗ global gt e∗ | ex∗ global gt im

(tables) tab ::= ex∗ table n i∗ | ex∗ table n im

(memories) mem ::= ex∗ memory n | ex∗ memory n im

(imports) im ::= import “name”“name”

(exports) ex ::= export “name”

(modules) mod ::= module func∗ glob∗ tab? mem?

Figure 1: WebAssembly abstract syntax

to blocks with misaligned stack heights, or branch into the
middle of a multi-byte instruction. These properties allow
WebAssembly code to be validated in a single pass, com-
piled in a single pass, and even transformed to an SSA-form
intermediate representation in the same single pass.

Control Constructs. As required by the grammar in
Figure 1, the block, loop and if constructs must be termi-
nated by an end opcode and be properly nested to be con-
sidered well-formed. The inner instruction sequences e∗ in
these constructs form a block. Note that loop does not au-
tomatically iterate its block but allows constructing a loop
manually with explicit branches. Every control construct is
annotated with a function type ft = t∗1 → t∗2 describing its
effect on the stack, popping values typed t∗1 and pushing t∗2.

Branches. Branches can be unconditional (br), condi-
tional (br if), or indexed (br table). They have “label” im-
mediates that do not denote positions in the instruction
stream but reference outer control constructs by relative
nesting depth. Hence, labels are effectively scoped : branches
can only reference constructs in which they are nested. Tak-
ing a branch“breaks from”that construct’s block;3 the exact
effect depends on the target construct: in case of a block or
if it is a forward jump to its end (like a break statement);
with a loop it is a backward jump to its beginning (like a
continue statement). Branching unwinds the operand stack
by implicitly popping all unused operands, similar to return-
ing from a function call. This liberates producers from hav-
ing to track stack height across sub-expressions and adding
explicit drops to make them match.

Expressiveness. Structured control flow may seem like
a severe limitation, but most high-level control constructs
are readily expressible with the suitable nesting of blocks.
For example, a C-style switch statement with fall-through,

switch (x) {
case 0: ...A...
case 1: ...B... break;
default: ...C...

}

becomes

block block block block
br table 0 1 2
end ...A...
end ...B... br 1
end ...C...

end

Slightly more finesse is required for fall-through between un-
ordered cases. Various forms of loops can likewise be ex-
pressed with combinations of loop, block, br and br if.

It is the responsibility of producers to transform unstruc-
tured and irreducible control flow into structured form. This
is the established approach to compiling for the Web, where

3The name br can also be read as “break” wrt. a block.

JavaScript is also restricted to structured control. In our
experience building an LLVM backend for WebAssembly,
irreducible control flow is rare, and a simple restructuring
algorithm [18] is sufficient to translate any CFG to Web-
Assembly. The benefit of the restriction is that many algo-
rithms in engines are much simpler and faster.

2.4 Function Calls and Tables
A function body is a block. Execution can complete by

either reaching the end of the block with the function’s result
values on the stack, or by a branch exiting the function
block, with the branch operands as the result values; the
return instruction is simply shorthand for the latter.

Calls. Functions can be invoked directly using the call
instruction which takes an immediate identifying the func-
tion to call. Function pointers can be emulated with the
call indirect instruction which takes a runtime index into a
table of functions defined by the module. The functions in
this table are not required to have the same type. Instead,
the type of the function is checked dynamically against an
expected type supplied to the call indirect instruction and
traps in case of a mismatch. This check protects the integrity
of the execution environment. The heterogeneous nature of
the table is based on experience with asm.js’s multiple ho-
mogeneous tables; it allows more faithful representation of
function pointers and simplifies dynamic linking. To aid
dynamic linking scenarios further, exported tables can be
grown and mutated dynamically through external APIs.

Foreign Calls. Functions can be imported into a mod-
ule. Both direct and indirect calls can invoke an imported
function, and through export/import, multiple module in-
stances can communicate. Additionally, the import mecha-
nism serves as a safe foreign function interface (FFI) through
which a WebAssembly program can communicate with its
embedding environment. For example, on the Web imported
functions may be host functions that are defined in JavaScript.
Values crossing the language boundary are automatically
converted according to JavaScript rules.

2.5 Determinism
WebAssembly has sought to provide a portable target for

low-level code without sacrificing performance. Where hard-
ware behavior differs it usually is corner cases such as out-of-
range shifts, integer divide by zero, overflow or underflow in
floating point conversion, and alignment. Our design gives
deterministic semantics to all of these across all hardware

with only minimal execution overhead.
However, there remain three sources of implementation-

dependent behavior that can be viewed as non-determinism.
NaN Payloads. WebAssembly follows the IEEE 754

standard for floating point arithmetic. However, IEEE does
not specify the exact bit pattern for NaN values in all cases,
and we found that CPUs differ significantly, while normaliz-
ing after every numeric operation is too expensive. Based on
our experience with JavaScript engines, we picked rules that
allow the necessary degree of freedom while still providing
enough guarantees to support techniques like NaN-tagging.

Resource Exhaustion. Available resources are always
finite and differ wildly across devices. In particular, an en-
gine may be out of memory when trying to grow the linear
memory – semantically, the memory.grow instruction can
non-deterministically return −1. A call instruction may also
trap due to stack overflow, but this is not semantically ob-
servable from within WebAssembly itself because it aborts.

Host Functions. WebAssembly programs can call host
functions which are themselves non-deterministic or change
WebAssembly state. Naturally, the effect of calling host
functions is outside the realm of WebAssembly’s semantics.

WebAssembly does not (yet) have threads, and therefore
no non-determinism arising from concurrent memory access.
Adding threads is the subject of ongoing work.

2.6 Binary Format
WebAssembly is transmitted as a binary encoding of the

abstract syntax presented in Figure 1. This encoding has
been designed to minimize both size and decoding time. A
binary represents a single module and is divided into sections
according to the different kinds of entities declared in it.
Code for function bodies is deferred to a separate section
placed after all declarations to enable streaming compilation
as soon as function bodies begin arriving over the network.
An engine can also parallelize compilation of function bodies.
To aid this further, each body is preceded by its size so that
a decoder can skip ahead and parallelize even its decoding.

The format also allows user-defined sections that may be
ignored by an engine. For example, a custom section is used
to store debug metadata such as source names in binaries.

3. SEMANTICS
The WebAssembly semantics consists of two parts: the

static semantics defining validation, and the dynamic se-
mantics defining execution. In both cases, the presentation
as a language allowed us to adopt off-the-shelf formal meth-
ods developed in programming language research over the
past decades. They are convenient and effective tools for
declarative specifications. While we can not show all of it
here, our specification is precise, concise, and comprehensive
– validation and execution of all of WebAssembly fit on just
two pages of our original paper [4].

Furthermore, these formulations allow effective proofs of
essential properties of this semantics, as are standard in pro-
gramming language research, but so far have rarely ever been
done as part of an industrial-strength design process.

Finally, our formalization enabled other researchers to eas-
ily mechanize the WebAssembly specification with theorem
provers, thereby machine-verifying our correctness results as
well as constructing a provably correct interpreter.

3.1 Execution
We cannot go into much detail in this article, but we want

to give a sense for the general flavor of our formalization

(see [4] for a more thorough explanation).
Reduction. Execution is defined in terms of a standard

small-step reduction relation [13], where each step of com-
putation is described as a rewrite rule over a sequence of
instructions. Figure 2 gives an excerpt of these rules.

For example, the instruction sequence

(i32.const 3) (i32.const 4) i32.add

is reduced to the constant (i32.const 7) according to the
fourth rule. This formulation avoids the need for introduc-
ing the operand stack as a separate notion in the semantics –
that stack simply consists of all leading t.const instructions
in an instruction sequence. Execution terminates when an
instruction sequence has been reduced to just constants, cor-
responding to the stack of result values. Therefore, constant
instructions can be treated as values and abbreviated v.

To deal with control constructs, we need to squint a little
and extend the syntax with a small number of auxiliary ad-
ministrative instructions that only occur temporarily dur-
ing reduction. For example, label marks the extent of an
active block and records the continuation of a branch to it,
while frame essentially is a call frame for function invoca-
tion. Through nesting these constructs, the intertwined na-
ture of operand and control stack is captured, avoiding the
need for separate stacks with tricky interrelated invariants.

Configurations. In general, execution operates relative
to a global store s as well as the current function’s frame f .
Both are defined in the upper part of Figure 2.

The store models the global state of a program and is
a record of the lists of function, global, table, and memory
instances that have been allocated. An index into one of the
store components is called an address a. We use notation
like sfunc(a) to look up the function at address a. A module
instance then maps static indices i that occur in instructions
to their respective dynamic addresses in the store.

To that end, each frame carries – besides the state of the
function’s local variables – a link to the module instance
it resides in, applying notational short-hands like ftable for
(fmodule)table. Essentially, every function instance is a closure
over the function’s module instance. An implementation can
eliminate these closures by specializing generated machine
code to a module instance.

For example, for a direct call i, the respective function
instance is looked up in the store through the frame of the
caller. Similarly, for an indirect call, the current table is
looked up and the callee’s address is taken from there (if
the function’s type ft does not match the expected type,
then a trap is generated). Both kinds of calls reduce to a
common administrative instruction call fi performing a call
to a known function instance; reducing that further creates
a respective frame for the callee and initializes its locals.

Together, the triple s; f ; e∗ of store, frame, and instruction
sequence forms a configuration that represents the complete
state of the WebAssembly abstract machine at a given point
in time. Reduction rules, in their full generality, then rewrite
configurations not just instruction sequences.

3.2 Validation
On the Web, code is fetched from untrusted sources and

must be validated. Validation rules for WebAssembly are
defined succinctly as a type system. This type system is, by
design, embarrassingly simple, and designed to be efficiently
checkable in a single linear pass.

Typing Rules. Again, we utilize standard techniques for
defining our semantics declaratively, this time via a system
of natural deduction rules [12]. Figure 3 shows an excerpt

(store) s ::= {func fi∗, global v∗, table ti∗, mem mi∗}
(frames) f ::= {module m, local v∗}
(module instances) m ::= {func a∗, global a∗, table a?, mem a?}
(function instances) fi ::= {module m, code func} (where func is not an import and has all exports ex∗ erased)
(table instances) ti ::= (a?)∗

(memory instances) mi ::= b∗

(values) v ::= t.const c

(administrative operators) e ::= . . . | trap | call fi | labeln{e∗} e∗ end | framen{f} e∗ end

nop ↪→ ε
v drop ↪→ ε

(t.const c) t.unop ↪→ t.const unopt(c)
(t.const c1) (t.const c2) t.binop ↪→ t.const binopt(c1, c2)

vn block (tn1 → tm2) e∗ end ↪→ labelm{ε} vn e∗ end
vn loop (tn1 → tm2) e∗ end ↪→ labeln{loop (tn1 → tm2) e∗ end} vn e∗ end

labeln{e∗} v∗ end ↪→ v∗

labeln{e∗} Li[vn (br i)] end ↪→ vn e∗ where L0 ::= v∗ [] e∗ and Lk+1 ::= v∗ labeln{e∗} Lk end e∗

f ; (get local i) ↪→ v if flocal(i) = v
f ; v (set local i) ↪→ f ′; ε if f ′ = f with local(i) = v

s; f ; (call i) ↪→ call sfunc(ffunc(i))
s; f ; (i32.const i) (call indirect ft) ↪→ call sfunc(stable(ftable)(i)) if sfunc(stable(ftable)(i))code = (func ft local t∗ e∗)
s; f ; (i32.const i) (call indirect ft) ↪→ trap otherwise

vn (call fi) ↪→ framem{module fimodule, local v
n (t.const 0)k} e∗ end ...

framen{f} vn end ↪→ vn | . . . where fi code = (func (tn1 → tm2) local tk e∗)
framen{f} Lk[vn return] end ↪→ vn

s; f0; framen{f} e∗ end ↪→ s′; f0; framen{f ′} e′∗ end if s; f ; e∗ ↪→ s′; f ′; e′
∗

Figure 2: Small-step reduction rules (Excerpt)

of the rules for typing instructions. They collectively define
a judgement C ` e : ft , which can be read as “instruction e
is valid with type ft under the assumptions embodied in the
context C”. The context records the types of all declarations
that are in scope at a given point in a program. The type of
an instruction is a function type that specifies its required
input stack and the provided output stack.

Each rule consists of a conclusion (the part below the bar)
and a possibly empty list of premises (the pieces above the
bar). It can be read as a big implication: the conclusion
holds if all premises hold. One rule exists for each instruc-
tion, defining when it is well-typed. A program is valid if and
only if the rules can inductively derive that it is well-typed.

For example, the rules for constants and simple numeric
operators are trivial axioms, since they do not even require a
premise: an instruction of the form t.binop always has type
t t → t, i.e., consumes two operands of type t and pushes
one. The rules for control constructs require that their type
matches the explicit annotation ft , and they extend the con-
text with a local label when checking the inner block. Label
types are looked up in the context when typing branch in-
structions, which require suitable operands on the stack to
match the stack at the join point.

3.3 Soundness
The WebAssembly type system enjoys standard sound-

ness properties [16]. Soundness proves that the reduction
rules actually cover all execution states that can arise for
valid programs. In other words, it proves the absence of
undefined behavior. In particular, this implies the absence
of type safety violations such as invalid calls or illegal ac-
cesses to locals, it guarantees memory safety, and it ensures
the inaccessibility of code addresses or the call stack. It
also implies that the use of the operand stack is structured

and its layout determined statically at all program points,
which is crucial for efficient compilation on a register ma-
chine. Furthermore, it establishes memory and state en-
capsulation – i.e., abstraction properties on the module and
function boundaries, which cannot leak information.

Given our formal definition of the language, soundness can
be made precise as a fairly simple theorem:

Theorem 3.1 (Soundness). If ` s; f ; e∗ : tn (i.e., con-
figuration s; f ; e∗ is valid with resulting stack type tn), then:
• either s; f ; e∗ ↪→∗ s′; f ′; (t.const c)n (i.e., after a fi-

nite number of steps the instruction sequence has been
reduced to values of the correct types),
• or s; f ; e∗ ↪→∗ s′; f ′; trap (i.e., execution traps after a

finite number of steps),
• or execution diverges (i.e., there is an infinite sequence

of reduction steps it can take).

This formulation uses a typing judgement generalized to con-
figurations whose definition we omit here. The property
ensures that all valid programs either diverge, trap, or ter-
minate with values of the expected types. The proofs are
completely standard (almost boring) induction proofs like
can be found in many text books or papers on the subject.

3.4 Mechanization
For our paper, we have done the soundness proofs by hand,

on paper. We also have implemented a WebAssembly refer-
ence interpreter in OCaml that consists of a direct transliter-
ation of the formal rules into executable code (Section 4.1).
While both tasks were largely straightforward, they are al-
ways subject to subtle errors not uncovered by tests.

Fortunately, over the last 15 years, methodologies for mech-
anizing language semantics and their meta-theory in theo-
rem provers have made significant advances. Because our

(contexts) C ::= {func ft∗, global gt∗, table n?, memory n?, local t∗, label (t∗)∗, return (t∗)?}

C ` t.const c : ε→ t C ` t.unop : t→ t C ` t.binop : t t→ t C ` nop : ε→ ε C ` drop : t→ ε

ft = tn1 → tm2 C, label (tm2) ` e∗ : ft

C ` block ft e∗ end : ft

ft = tn1 → tm2 C, label (tn1) ` e∗ : ft

C ` loop ft e∗ end : ft

Clabel(i) = t∗

C ` br i : t∗1 t
∗ → t∗2

Cfunc(i) = ft

C ` call i : ft

ft = t∗1 → t∗2 Ctable = n

C ` call indirect ft : t∗1 i32→ t∗2

Creturn = t∗

C ` return : t∗1 t
∗ → t∗2

Clocal(i) = t

C ` get local i : ε→ t

Clocal(i) = t

C ` set local i : t→ ε

Figure 3: Typing rules (Excerpt)

formalization uses well-established techniques, other researchers
have been able to apply mechanization to it immediately.
As a result, there are multiple projects for mechanizing the
semantics – and in fact, the full language definition (Sec-
tion 4) – in three major theorem provers and semantics tools,
namely Isabelle, Coq, and K. Their motivation is in both
verifying WebAssembly itself as well as providing a founda-
tion for other formal methods applications, such as verifying
compilers targeting WebAssembly or proving properties of
programs, program equivalences, and security properties.

The Isabelle mechanization was completed first and has
already been published [14]. It not only contains a machine-
verified version of our soundness proof, it also includes a
machine-verified version of a validator and interpreter for
WebAssembly that other implementations and our reference
interpreter can be compared against. Moreover, in the pro-
cess of mechanizing the soundness proof this work uncovered
a few minor bugs in the draft version of our formalization
and enabled us to fix it in a timely manner for publication.

4. STANDARDIZATION
The previous section reflects the formalization of Web-

Assembly as published in our PLDI paper [4] with a few
minor stylistic modifications. However, our reason for de-
veloping this semantics was more than producing a paper
targeted at researchers – it was meant to be the basis of
the official language definition [15]. This definition, which is
currently under review as a standard for the W3C, contains
the complete formalization of the language.

4.1 Core Language
The language definition follows the formalization and spec-

ifies abstract syntax, typing rules, reduction rules, and an
abstract store. Binary format and text format are given as
attribute grammars exactly describing the abstract syntax
they produce. As far as we are aware, this level of rigor and
precision is unprecedented for industrial-strength languages.

Formalism. Although the formal methods we use are
standard in academic literature and CS curricula, a widely
consumed standard cannot (yet) assume that all its readers
are familiar with formal notation for semantics (unlike for
syntax). Next to the formal rules, the specification hence
also contains corresponding prose. This prose is intended
to be a one-to-one “text rendering” of the formal rules. Al-
though the prose follows the highly verbose“pseudo-COBOL”
style of other language definitions, its eyeball proximity to
a verified formalism aids spotting bugs. Having the formal
rules featured centrally in the standard document hence ben-
efits even readers that do not read them directly.

Reference Interpreter. Along with the formalization
and production implementations in browsers, we developed
a reference interpreter for WebAssembly. For this we used
OCaml due to the ability to write in a high-level stylized
fashion that closely matches the formalization, approximat-
ing an “executable specification”. The interpreter is used to
develop the test suite, test production implementations and
the formal specification, and to prototype new features.

Proposal Process. To maintain the current level of
rigor while evolving WebAssembly further, we have adopted
a multi-staged proposal process with strong requirements.
At various stages of a proposal, its champions must pro-
vide (1) an informal description, (2) a prose specification,
(3) a prototype implementation, (4) a comprehensive test
suite, (5) a formal specification, (6) an implementation in
the reference interpreter, and (7) two implementations in
independent production systems.

The process is public on the working group’s Git reposi-
tory, where specification, reference interpreter, and test suite
are hosted. Creating a proposal involves asking the group to
create a fork of the main“spec”repository and then iterating
and reviewing all required additions there.

Obviously, a formal semantics is not straightforward in
all cases. Where necessary, the working group is collaborat-
ing with research groups for non-trivial features, such as a
suitable weak memory model for the addition of threads.

4.2 Embedding
WebAssembly is similar to a virtual ISA in that it does not

define how programs are loaded into the execution engine or
how they perform I/O. This intentional design separation is
captured in the notion of embedding a WebAssembly imple-
mentation into an execution environment. The embedder
defines how modules are loaded, how imports and exports
are resolved, how traps are handled, and provides foreign
functions for accessing the environment.

To strengthen platform-independence and encourage other
embeddings of WebAssembly, the standard has been layered
into separate documents: while the core specification only
defines the virtual ISA, separate embedder specifications de-
fine its interaction with concrete host environments.

JavaScript and the Web. In a browser, WebAssembly
modules can be loaded, compiled and invoked through a
JavaScript API. The rough recipe is to (1) acquire a binary
module from a given source, e.g. as a network resource, (2)
instantiate it providing the necessary imports, (3) call the
desired export functions. Since compilation and instantia-
tion may be slow, they are provided as asynchronous meth-
ods whose results are wrapped in promises. The JavaScript
API also allows creating and initializing memories or tables

externally, or accessing them as exports.
Interoperability It is possible to link multiple modules

that have been created by different producers. However,
as a low-level language, WebAssembly does not provide any
built-in object model. It is up to producers to map their data
types to memory. This design provides maximum flexibility
to producers, and unlike previous VMs, does not privilege
any specific programming paradigm or object model.

Interested producers can define common ABIs on top of
WebAssembly such that modules can interoperate in hetero-
geneous applications. This separation of concerns is vital for
making WebAssembly universal as a code format.

5. IMPLEMENTATION
A major design goal of WebAssembly has been high per-

formance without sacrificing safety or portability. Through-
out its design process, we have developed independent im-
plementations of WebAssembly in all major browsers to val-
idate and inform the design decisions. This section describes
some points of interest of those implementations.

Implementation Strategies. V8 (Chrome), SpiderMon-
key (Firefox) and JavaScriptCore (WebKit) reuse their opti-
mizing JavaScript compilers to compile WebAssembly mod-
ules ahead-of-time. This achieves predictable high perfor-
mance and avoids the unpredictability of warmup time which
has often been a problem for JavaScript. Chakra (Edge)
instead lazily translates individual functions to an inter-
preted internal bytecode format upon first execution, and
later JIT-compiles the hottest functions. The advantage is
faster startup and potentially lower memory consumption.
We expect more strategies to evolve over time.

Validation. In the four aforementioned implementations,
the same algorithmic strategy using abstract control and
operand stacks is used. Validation of incoming bytecodes oc-
curs in a single pass during decoding, requiring no additional
intermediate representation. We measured single-threaded
validation speed at between 75 MiB/s and 150 MiB/s on a
suite of representative benchmarks on a modern worksta-
tion. This is approximately fast enough to perform valida-
tion at full network speed.

Baseline JIT Compiler. The SpiderMonkey engine in-
cludes two WebAssembly compilation tiers. The first is a
fast baseline JIT that emits machine code in a single pass
combined with validation. The JIT creates no internal IR
but does track register state and attempts to do simple
greedy register allocation in the forward pass. The baseline
JIT is designed only for fast startup while an optimizing JIT
is compiling the module in parallel in the background. V8
includes a similar baseline JIT in a prototype configuration.

Optimizing JIT Compiler. All four engines include op-
timizing JITs for their top-tier execution of JavaScript and
reuse them for WebAssembly. Both V8 and SpiderMonkey
use SSA-based intermediate representations. As such, it was
important that WebAssembly can be decoded to SSA form
in a single pass. This is greatly helped by WebAssembly’s
structured control flow, making the decoding algorithm sim-
pler and more efficient and avoiding the limitation of JITs
that usually do not support irreducible control flow. Reusing
the advanced JITs from four different JavaScript engines has
been a resounding success that allowed all engines to achieve
high performance in a short time.

Bounds Checks. By design, all memory accesses in
WebAssembly can be guaranteed safe with a single dynamic
bounds check, which amounts to checking the address against
the current size of the memory. An engine will allocate the

 0%

50%

100%

150%

200%

250%

2m
m

3m
m ad

i
bi
cg

ch
ol
es

ky

co
rre

la
tio

n

co
va

ria
nc

e

do
itg

en

du
rb

in

dy
np

ro
g

fd
td

-2
d

ge
m

m

ge
m

ve
r

ge
su

m
m

v

gr
am

sc
hm

id
t

lu
dc

m
p lu

m
vt

se
id
el
-2

d

sy
m

m
sy

r2
k

sy
rk

tri
so

lv

trm
m

re
la

ti
v
e
 e

x
e
c
u
ti
o
n

 t
im

e
,
n

a
ti
v
e
 i
s
 1

0
0
%

 (

lo
w

e
r

is
 b

e
tt
e

r)

execution
difference between VMs

validation
compilation
VM startup

Figure 4: Relative execution time of the Poly-
BenchC benchmarks on WebAssembly normalized
to native code

memory in a large contiguous range beginning at some (pos-
sibly non-deterministic) base in the engine’s process, so that
all access amounts to a hardware address base +addr . While
base can be stored in a dedicated machine register for quick
access, a more aggressive strategy is to specialize the ma-
chine code for each instance to a specific base, embedding
it as a constant directly into the code, freeing a register.
Although the base may change when the memory is grown
dynamically, it changes so infrequently that it is affordable
to patch the machine code when it does.

On 64 bit platforms, an engine can make use of virtual
memory to eliminate bounds checks for memory accesses
altogether. The engine simply reserves 8 GiB of virtual ad-
dress space and marks as inaccessible all pages except the
valid portion of memory near the start. Since WebAssembly
memory addresses and offsets are 32 bit integers plus a
static constant, by construction no access can be further
than 8 GiB away from base. Consequently, the JIT can sim-
ply emit plain load/store instructions and rely on hardware
protection mechanisms to catch out-of-bounds accesses.

Parallel and Streaming Compilation. With ahead-
of-time compilation it is a clear performance win to par-
allelize compilation of WebAssembly modules, dispatching
individual functions to different threads. For example, both
V8 and SpiderMonkey achieve a 5-6× improvement in com-
pilation speed with 8 compilation threads. In addition, the
design of the WebAssembly binary format supports stream-
ing where an engine can start compilation of individual func-
tions before the full binary has been loaded. When combined
with parallelization, this minimizes cold startup.

Code Caching Besides cold startup, warm startup time
is important as users will likely visit the same Web pages re-
peatedly. The JavaScript API for the IndexedDB database
allows JavaScript to manipulate and compile WebAssembly
modules and store their compiled representation as an opaque
blob. This allows a JavaScript application to first query In-
dexedDB for a cached version of their WebAssembly module
before downloading and compiling it. In V8 and Spider-
Monkey, this mechanism can offer an order of magnitude
improvement of warm startup time.

5.1 Measurements
Execution. Figure 4 shows the execution time of the

PolyBenchC benchmark suite running on WebAssembly on
both V8 and SpiderMonkey normalized to native execution.4

4See [4] for details on the experimental setup for these mea-

0

500

1000

1500

2000

0 500 1000 1500 2000

W
eb

As
se

m
bl

y
si

ze
 in

 b
yt

es

asm.js or native size in bytes

WebAssembly/asm.js
WebAssembly/native

0
20
40
60
80

0 20 40 60 80

Figure 5: Binary size of WebAssembly in compari-
son to asm.js and native code

Times for both engines are shown as stacked bars, and the
results show that there are still some differences between
them due to different code generators.5 We measured a VM
startup time of 18 ms for V8 and 30 ms for SpiderMonkey.
These times are included along with compilation times as
bars stacked on top of the execution time of each benchmark.
Overall, the results show that WebAssembly is competitive
with native code, with 7 benchmarks within 10 % of native
and nearly all of them within 2× of native.

We also measured the execution time of the PolyBenchC
benchmarks running on asm.js. On average, WebAssembly
is 33.7 % faster than asm.js. Especially validation is signifi-
cantly more efficient. For SpiderMonkey, WebAssembly val-
idation takes less than 3 % of the time of asm.js validation.
In V8, memory consumption of WebAssembly validation is
less than 1 % of that for asm.js validation.

Code Size. Figure 5 compares code sizes between Web-
Assembly, minified asm.js, and x86-64 native code. For the
asm.js comparison we use the Unity benchmarks, for the na-
tive code comparison the PolyBenchC and SciMark bench-
marks. For each function in these benchmarks, a yellow
point is plotted at 〈sizeasmjs, sizewasm〉 and a blue point at
〈sizex86, sizewasm〉. Any point below the diagonal represents
code for which WebAssembly is smaller than the correspond-
ing other representation. On average, WebAssembly code is
62.5 % the size of asm.js, and 85.3 % of native x86-64 code.

6. RELATED WORK
Microsoft’s ActiveX was a technology for code-signing x86

binaries to run on the Web. It relied entirely upon trust and
thus did not achieve safety through technical construction.

Native Client [17] was the first system to introduce a sand-
boxing technique for machine code on the Web that runs
at near native speed. It relies on static validation of x86
machine code, requiring code generators to follow certain
patterns, such as bit masks before memory accesses and
jumps. Instead of hardware-specific x86 code, Portable Na-
tive Client (PNaCl) uses a stable subset of LLVM bitcode [6]
as an interchange format.

Emscripten [18] is a framework for compiling C/C++ ap-
plications to a specialized subset of JavaScript that later
evolved into asm.js [1], an embedded domain specific lan-
guage that serves as a statically-typed assembly-like lan-
guage and eschews the dynamic types of JavaScript through

surements.
5V8 is faster on some benchmarks and SpiderMonkey on
others. Neither engine is universally faster than the other.

additional type coercions coupled with a module-level vali-
dation of interprocedural invariants.

Efficient memory safety is a hard design constraint of
WebAssembly. Previous systems such as CCured [11] and
Cyclone [5] have imposed safety at the C language level,
which generally requires program changes. Other attempts
have enforced it at the C abstract machine level with combi-
nations of static and runtime checks, sometimes assisted by
hardware. For example, the Secure Virtual Architecture [2]
defines an abstract machine based on LLVM bitcode that
enforces the SAFECode [3] properties.

We investigated reusing other compiler IRs that have a
binary format, such as LLVM. Disadvantages with LLVM
bitcode in particular are that it is not entirely stable, has un-
defined behavior, and is less compact than a stack machine.
Furthermore, it requires every consumer to either include
LLVM, which is notoriously slow, or reimplement a fairly
complex LLVM IR decoder/verifier. In general, compiler
IRs are better suited to optimization and transformation,
and not as compact, verifiable code formats.

In comparison to safe “C” machines, typed intermediate
languages, and typed assembly languages [9], WebAssembly
radically reduces the scope of responsibility for the VM: it
is not required to enforce the type system of the original
program at the granularity of individual objects; instead it
must only enforce memory safety at the much coarser gran-
ularity of a module’s memory. This can be done efficiently
with simple bounds checks or virtual memory techniques.

The speed and simplicity of bytecode validation is key
to good performance and high assurance. Our work was
informed by experience with stack machines such as the
JVM [8] and CIL [10] and their validation algorithms. It
took a decade of research to properly systematize the de-
tails of correct JVM verification [7], including the discovery
of vulnerabilities. By designing WebAssembly in lock-step
with a formalization we managed to make its semantics dras-
tically simpler: for example, instead of 150 pages for JVM
bytecode verification, just a single page of formal notation.

7. FUTURE DIRECTIONS
The initial version of WebAssembly presented here con-

sciously focuses on supporting low-level code, specifically
compiled from C/C++. A few important features are still
missing for fully comprehensive support of this domain and
will be added in future versions, such as exceptions, threads,
and SIMD instructions. Some of these features are already
being prototyped in implementations of WebAssembly.

Beyond these, we intend to evolve WebAssembly further
into an attractive target for high-level languages by including
relevant primitives like tail calls, stack switching, or corou-
tines. A highly important goal is to provide access to the
advanced and highly tuned garbage collectors that are built
into all Web browsers, thus eliminating the main shortcom-
ing relative to JavaScript when compiling to the Web.

In addition to the Web, we anticipate that WebAssembly
will find a wide range of uses in other domains. In fact,
multiple other embeddings are already being developed: for
sandboxing in content delivery networks, for smart contracts
or decentralized cloud computing on blockchains, as code
formats for mobile devices, and even as mere stand-alone
engines for providing portable language runtimes.

Many challenges lie ahead in supporting all these features
and usage scenarios equally well while maintaining the level
of precision, rigor, and performance that has been achieved
with the initial version of WebAssembly.

8. REFERENCES
[1] asm.js. http://asmjs.org. Accessed: 2016-11-08.
[2] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve.

Secure Virtual Architecture: A safe execution
environment for commodity operating systems.
Operating Systems Review, 41(6):351–366, Oct. 2007.

[3] D. Dhurjati, S. Kowshik, and V. Adve. SAFECode:
Enforcing alias analysis for weakly typed languages. In
Programming Language Design and Implementation
(PLDI), 2006.

[4] A. Haas, A. Rossberg, D. Schuff, B. Titzer,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien.
Bringing the Web up to speed with WebAssembly. In
Programming Language Design and Implementation
(PLDI), 2017.

[5] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks,
J. Cheney, and Y. Wang. Cyclone: A safe dialect of C.
In USENIX Annual Technical Conference (ATEC),
2002.

[6] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis &
transformation. In Code Generation and Optimization
(CGO), 2004.

[7] X. Leroy. Java bytecode verification: Algorithms and
formalizations. Journal of Automated Reasoning,
30(3-4):235–269, Aug. 2003.

[8] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley.
The Java Virtual Machine Specification (Java SE 8
Edition). Technical report, Oracle, 2015.

[9] G. Morrisett, D. Walker, K. Crary, and N. Glew. From
System F to Typed Assembly Language. ACM

Transactions on Programming Languages and Systems
(TOPLAS), 21(3):527–568, May 1999.

[10] G. C. Necula, S. McPeak, S. P. Rahul, and
W. Weimer. CIL: Intermediate language and tools for
analysis and transformation of C programs. In
Compiler Construction (CC), 2002.

[11] G. C. Necula, S. McPeak, and W. Weimer. CCured:
Type-safe retrofitting of legacy code. In Principles of
Programming Languages (POPL), 2002.

[12] B. Pierce. Types and Programming Languages. The
MIT Press, Cambridge, Massachusetts, USA, 2002.

[13] G. Plotkin. A structural approach to operational
semantics. Journal of Logic and Algebraic
Programming, 60-61:17–139, 2004.

[14] C. Watt. Mechanising and verifying the WebAssembly
specification. In Certified Programs and Proofs (CPP),
2018.

[15] WebAssembly Community Group. WebAssembly
Specification, 2018.
https://webassembly.github.io/spec/.

[16] A. Wright and M. Felleisen. A syntactic approach to
type soundness. Information and Computation,
115(1):38–94, Nov. 1994.

[17] B. Yee, D. Sehr, G. Dardyk, B. Chen, R. Muth,
T. Ormandy, S. Okasaka, N. Narula, and N. Fullagar.
Native Client: A sandbox for portable, untrusted x86
native code. In IEEE Symposium on Security and
Privacy, 2009.

[18] A. Zakai. Emscripten: An LLVM-to-JavaScript
compiler. In Object-Oriented Programming, Systems,
Languages, & Applications (OOPSLA), 2011.

